On the first eigenvalue of some quasilinear elliptic equations
نویسندگان
چکیده
منابع مشابه
A note on quasilinear elliptic eigenvalue problems
We study an eigenvalue problem by a non-smooth critical point theory. Under general assumptions, we prove the existence of at least one solution as a minimum of a constrained energy functional. We apply some results on critical point theory with symmetry to provide a multiplicity result.
متن کاملOn Neumann Boundary Value Problems for Some Quasilinear Elliptic Equations
We study the role played by the indefinite weight function a(x) on the existence of positive solutions to the problem −div (|∇u|∇u) = λa(x)|u|u+ b(x)|u|u, x ∈ Ω, ∂u ∂n = 0, x ∈ ∂Ω , where Ω is a smooth bounded domain in Rn, b changes sign, 1 < p < N , 1 < γ < Np/(N − p) and γ 6= p. We prove that (i) if ∫ Ω a(x) dx 6= 0 and b satisfies another integral condition, then there exists some λ∗ suc...
متن کاملOn Quasilinear Elliptic Equations in Ir
In this note we give a result for the operator p-Laplacian complementing a theorem by Brézis and Kamin concerning a necessary and sufficient condition for the equation −∆u = h(x)u in IR , where 0 < q < 1, to have a bounded positive solution. While Brézis and Kamin use the method of sub and super solutions, we employ variational arguments for the existence of solutions.
متن کاملSOME QUASILINEAR ELLIPTIC EQUATIONS INVOLVING MULTIPLE p-LAPLACIANS
This paper is devoted to the study, with variational technique, of the following quasilinear elliptic problem:
متن کاملEigenvalue Problems for a Quasilinear Elliptic Equation on Rn
where λ ∈ R. Next, we state the general hypotheses which will be assumed throughout the paper. (E) Assume that N , p satisfy the following relation N > p > 1. (G) g is a smooth function, at least C1,α(RN ) for some α∈ (0,1), such that g ∈ L∞(RN ) and g(x) > 0, on Ω+, with measure of Ω+, |Ω+| > 0. Also there exist R0 sufficiently large and k > 0 such that g(x) <−k, for all |x| > R0. Generally, p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1988
ISSN: 0386-2194
DOI: 10.3792/pjaa.64.8